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A Quadruple Fixed Point Theorem for
Contractive Type Condition by Using ICS
Mapping and Application to Integral Equation

K.P.R. RAao, G.N.V. KisHORE AND K.V. S1vA PARVATHI

ABSTRACT. In this paper, we obtain a Quadruple fixed point theorem
for 1) — ¢ contractive condition in partially ordered partial metric spaces
by using ICS mapping. We are also given an example and an application
to integral equation which supports our main theorem.

1. INTRODUCTION

The notion of partial metric space was introduced by Matthews [§] as a
part of the study of denotational semantics of data flow networks. In fact,
it is widely recognized that partial metric spaces play an important role
in constructing models in the theory of computation and domain theory in
computer science.

First we recall some basic definitions and lemmas which play crucial role
in the theory of partial metric spaces.

Definition 1.1. (See [8,9]) A partial metric on a nonempty set X is a
function p : X x X — R™ such that for all z,y,2 € X:

(p1) © =y plx,x) =plz,y) = p(y, ),

(p2) p(z,z) < p(z,y),p(y,y) < p(z,y),

(p3) p(z,y) = p(y, ),

(p4) p(l‘, y) < p(ﬂf, Z) +p(Z, y) - p(za Z)'
The pair (X, p) is called a partial metric space (PMS).

Clearly p(z,y) = 0 implies x = y and = # y implies p(z,y) > 0.
If p is a partial metric on X, then the function d, : X x X — R™ given by
dp(z,y) = 2p(z,y) — p(z,z) — p(y,y) is a metric on X.
Example 1.1 (See e.g. [9]). Consider X = [0, 00) with p(x,y) = max{x,y}.
Then (X, p) is a partial metric space. It is clear that p is not a (usual) metric.
Note that in this case d,(z,y) = |z — yl.
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Each partial metric p on X generates a Ty topology 7, on X which has as
a base the family of open p-balls {By(z,¢), € X,e > 0}, where By(z,¢) =
{ye X :p(z,y) < p(z,x) + ¢} for all z € X and € > 0.

We now state some basic topological notions (such as convergence, com-
pleteness) on partial metric spaces (see e.g. [1,2,8,9].)

Definition 1.2.

(1) A sequence {z,} in the PMS (X, p) converges to the limit = if and
only if p(z,x) = li_}m p(x, ).
(2) A sequence {z,} in the PMS (X,p) is called a Cauchy sequence if

lim p(xy,,x,) exists and is finite.
n,Mm—00

(3) A PMS (X,p) is called complete if every Cauchy sequence {z,}
in X converges with respect to 7,, to a point x € X such that

p(xa 1‘) = n }gg}loop(xn; xm)

We need the following lemmas in PMS([8,9]).

Lemma 1.1.

(1) A sequence {zy} is a Cauchy sequence in the PMS (X, p) if and only
if it is a Cauchy sequence in the metric space (X, dp).
(2) A PMS (X,p) is complete if and only if the metric space (X,d,) is
complete. Moreover
A dp(z,20) =0 & plz,2) = lim p(z,2n) = Hm_ p(@n, 2m)-

Lemma 1.2. Assume x, — z asn — oo in a PMS (X, p) such that p(z, z) =
0. Then limy, oo p(2n,y) = p(2,y) for everyy € X.

In 2009, K.P. Chi [3] introduced the concept of ICS mapping as follows.

Definition 1.3 ([3,7]). Let (X, d) be a metric space. A mappingT : X — X
is said to be ICS if T is injective, continuous and has the property: for every
sequence {z,} in X, if {T'z,,} is convergent then {x,} is also convergent.

Now we introduce the notion of Quadruple fixed point as follows.

Definition 1.4. An element (x,y,2,w) € X* is called a Quadruple fixed
point of F': X* — X if F(x,y,z,w) = 2, F(y,z,w,z) =y, F(z,w,z,y) = 2
and F(w,z,y,2) = w.

Definition 1.5 ([5,6]). Let (X, <) be a partial ordered set and F' : X% — X.
We say that F' has the mixed monotone property if F(x,y, z, w) is monotone
non decreasing in  and z, and is monotone non - increasing in y and w,
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that is, for any x,y, z,w € X.

x1,x9 € X,21 S 29 = F(xy,y,2,w) 2 F(xg,y, 2, w),
1,92 € X,p1 2y = F(a,yn,z,w) = F(z,y2, 2,w),
21,20 € X,21 29 =  F(z,y,21,w) 2 F(x,y, 29, w),
wi,we € X,wy Kwy = Flx,y,z,wy) = F(x,y, z,ws).

2. MAIN RESULTS

Let ¥ denote the set of all continuous and monotonically increasing func-
tions ¢ : [0,00) — [0, 00) with ¢(0) =

Let @ denote the set of all lower semi continuous functions ¢ : [0, 00) —
[0, 00) such that ¢(t) > 0 for t > 0 and ¢(0) =

Let (X, =) be a partial ordered set. We consider the following partial
order on the product space X% = X x X x X x X. (2,9, 2,w) = (u,v,7,t)
iff v <u,y>=v, 2z =<randw >t where (x,y,2 w) and (u,v,r,t) € X%

Theorem 2.1. Let (X,p,=<) be a complete ordered partial metric space.
Suppose T : X — X is an ICS mapping and F : X* — X is such that F
has the mized monotone property. Assume that there exist ¢ € ¥ and ¢ €
such that

Y (p(T'F(z,y, 2,w), TF(u,v,7,t)))
p(Tx, Tu), p(Ty, Tv),
(2.1.1) s <max{ p(Tz,Tr), p(Tw, Tt)
_ p(Tx, Tu), p(Ty, Tv),
¢ <max{ p(T2,Tr),p(Tw, Tt) f)
for all z,y, z,w,u,v,r,t € X for whichz 2w ,y>v, z=r and w > t.
Suppose X has the following property (A):

1. If non - decreasing sequence x,, — x, then x, = x for all n,
II. if non - increasing sequence y, — y, then y, = y for all n.

Suppose there exist xg, Yo, 20, Wy € X such that
zo =2 F(z0,Y0, 20, wo),
Yo = F'(yo, 20, wo, o),
20 = F(20, w0, Z0, Y0),
wo = F(wo, zo, Yo, 20)-
Then there exist x,y,z,w € X such that
F(z,y,z,w) =2z, F(y,z,w,x)=y,
F(z,w,z,y) =2z, F(w,z,y,2)=w,
that is, F' has a quadruple fized point.
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Proof. Let xq, Yo, 20, wg € X be such that

9 = F
yo = F
20 X F
wo = F

20, Y0, 20, ’lU[)),
Y0, 20, W0, T0 ),
Z0, Wo, L0, yO)a

)-

wo, 0, Yo, 20

—~~ Y~~~

Set

=F
=F
=F
=F

Z0, Y0, 20, w(])
Yo, 20, Wo, T 0)
20, Wo, L0, y(])

wo, Lo, Yo, ZO)

(
(
(
(

gN@&e

A 1Y I 1Y
o

and by the mixed monotone property of F', for n > 1, inductively we get

n_F(xn 1 Yn—1s Zn—1, Wn—1) = Tn—1 = *** = Tp,
= F(Yn-1,2n-1,Wn—1,Tn—-1) 2 Yn—1 = - X Yo,
= F(2n-1,Wn—1,Tn—1,Yn—1) = Zn—1 = = = 20,
= F(Wn—1,Tn-1,Yn—1,2n-1) X Wp_1 = -+ = wp.

Assume for some n € N, py1 = Ty, Yntl = Yn, Zntl = Zn and wpq1 =
W,

Then (2, Yn, 2n, Wy ) is a quadruple fixed point of F. Hence the theorem.

Now assume that x, 11 # Ty OF Ypy1 F# Yn O Zpt1 F Zn OF Wpi1 F Wy for
any n € N.

Since T' is injective, we have

an = max{p(Txni1, T2n), P(TYnt1, Tyn), P(T 2041, T2n), p(Twp g1, Twy)} > 0.

(0 (p(Txn-H; Tmn)) =1 (p(TF(xnv Yn, Zn, wn)a TF(xn—l’ Yn—1, 2n—1, wn—l)))

p(Tl'mTxnfl)ap(TynaTynfl)a
<
B 1/} <maX { p(TZn7 Tanl),p(TU}n, Twnfl)

o p(TxTnTxn—1)7p(Tyn7Tyn—1)7

¢ (max{ P(T2n, Tzn1), p(Ttwn, Twy—1)
= w (anfl) - ¢ (anfl) .

Similarly,



K.P.R. Rao, G.N.V. KisHoRE AND K.V. SivA PARVATHI 25

Hence
Txnt1, Txn), p(TYns1, Tyn),
Y (an) =9 (max{ gETZn:,Tzn)), ;’((Tini,T?juj) })
— max { ¥ (P(T 011, Tn)) 6 (p(TYs1, Tyn) }
Y (p(T2n11,T2n)) 0 (P(Twny1, Twy))
< (anfl) — ¢ (anfl)
Thus

Since 1 is increasing, we have
an < Ap-1, VNn=1,2,3,---
Thus {a,} is a positive decreasing sequence of real numbers. Hence there
exists 7 > 0 such that lim a, = r. Suppose r > 0.
n—oo

Letting n — oo in (1), we obtain that

Y(r) <9(r) — o(r) <¥(r).
a contradiction. Hence r = 0.

Thus

. p<T$n+17 Txn)yp(Tyn+la Tyn)y
9 ] —0.
@ L max{ (T zns1, Ton), p(Ttm s, Ttoy)

n—oo
From (p2), we have
(3) ILm max{p(Tz,,,Txy),p(Ty,,Ty,), p(Tz,,Tz,),p(Tw,, Twy,)} = 0.
From definition of d, and from (2) and (3), it follows that

. dp(T$n+1, Tl'n)a dp(Tyn+1v Tyn)? _
(4) nh—glo e { dp(Tz,, 41, T2n), dp(Tw,,  , Twn) [ >

Now we shall prove that {Tz,},{Tyn},{T2n} and {T'w,} are Cauchy
sequences in the metric space (X, dy). Assume on the contrary that {Tz,}
or {Tyn} or {Tz,} or {Twy} is not a Cauchy sequence in (X, dp).

Then there exists € > 0 for which we can find subsequences of integers
{my} and {ng} with ng > my > k such that

dy(Tx, Tz, ),dy(Ty, Ty, ) }
5 max p mg? ng/» P mp’ ng /9 > ¢
©) { dp(Tzp,, s T2y, ), dp(Tw,y,, , Twy, ) [ =

n+1’° n+1’°

my?
Further, corresponding to my, we may choose ny such that it is the small-
est integer satisfying (5) and ny > my. Then

dpy(Tx,, Tx, _1),dpy(Ty, Ty, _1) }
6 max P ey — =L A Ty I =1 b e

my? my
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We have

dp(Txm,,, Tan,) < dp(TTpm,, TTm, —1)
+ dp(Txmy—1, Tny—1) + dp(Txpy—1, Ty
< dp(Txmy, Trmy—1) + dp(Tomy—1, TTim,)
dp(Txmy,, Tan,—1) + dp(Tan, —1, Ty, )
(8) < 2dy(Txmy,, Ty —1) + € + dp(Tzp,—1, Txy, ), from (6).

(7)

Letting k — oo in (7) and (8) and using (4), we get

9) kh_}rgo dp(Txm,,, Tan,) < klin;o dp(Txpmy—1,Txp,—1) <€
Similarly,

(10) A dp(Tymy, Tyny) <l dp(Tymy—1, Tyng—1) < €

(11) khﬁrgo dp(Tzm,,, Tzp,,) < klirgo dp(Tzmy -1, T2n,—1) <€,

(12) klingo dp(Twp,,, Twy, ) < klggo dp(Twm,—1, Twp,—1) <,

Using (5) and (9) - (12), we have

€ < hm max dp Txmk7Txnk)7dp(TymkaTyTLk)?
T k—oo

(

(

dp(Txmk*h Txnkfl)v dp(Tymkflv Tynkq),
dp(szkfla Tznk71>a dp(Twmkfb Twnkfl)

Now using (13) and (3), we obtain

20Tz, Txn,) — p(TTm,, Tm,,) — p(Tan,, TTy,)

e — lim max 4 2PTYmis Tyni) = P(T Y, Tyimy) = P(TYny, Ty, )

koo 2p(Tzm,, T2ny,) — P(T2my, s T2m,) — D(T2n,, T2n,.)
2p(Twr,,,, Twy,,) — p(Twpm,, Twp, ) — p(Twn,,, Twy,)

€ . P(Txm,,, Top,), p(TYmy, TYny, )
14 — =1 k k72 k? k .
( ) kl}ﬂ;o maX{ p(TkaaTznk)vp(Twmvawnk)

Similarly from (13) and (14), we obtain

€ : P(Txmy—1, Ty —1), P(TYmy—15 TYny—1)
15 — =1 k k ) k k ) )
( ) 2 e max{ p(Tka—laTznk—l)’p(Twmk—laTwnk—l)

k—o0
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Now using (2.1.1), we have
¥ (p(T 2y Tny, )

= ’(/](p(F('rmk—17ymk—1)ka—lawmk—l)aF(xnk—luynk—laznk—lawnk—l)))

P(T%nk—l,Txnk—l)ap(TymkflaTynk—1)7
<
B w <maX { p(Tkafly Tznkfl)ap(Twmkfla Twnkfl)

_ ¢ max p(Txmk—laTxnk—1)7p(Ty’mk—17Tynk—1)7 )
p(Tka—la Tznk—l)vp(Twmk—la Twnk—l)

Similarly,
(0 (p(Tymk ) Tynk ))

P(Txmy—1, Txn—1), D(TYmp—1, TYng—1),
<
- w <max{ p(TkaflyTznkfl)ap(Twmkflvankfl)

o (b max p(Txmk—lyTxnk—l)up(Tymk—LTynk—l)u
p(Tka—lvTznk—l)ap<Twmk—17Twnk—l) ’

b (P(Tzmy Tz )

p(Tvak—lyTxnk—l)ap(T?/mkfla Tynkfl)a
<
B w (maX { p(Tkaflv Tznkfl)ap(Twmkfl7 Twnkfl)

_ (b max p(Txmk—laTxnk—l)ap(Tymk—laTynk—l)a
p(Tka—lv Tznk—1)7p(Twmk—17 Twnk—l)

and
7/} (p(Twmk ) Tw’ﬂk ))

p(Tﬁﬂmk—l,Txn,;l)ap(TymkflaTynk—1)7
<
o w <maX{ p(TkaflyTznkfl)ap(TwmkflaTwnkfl)

_d) max p(Txmk—laTxnk—l)up(Tymk—hTynk—l)a ]
p(szk—la Tznk—1)7p<Twmk—l7 Twnk—l)

Thus
(max{p(Tzmy, T, ), D(TYmy, Tny)s
D(Tzmy s Ty )y D(Twny, T, })
= max{y (P(Tzmy, Tny)) % (0(TYmy> Tyny)) »
U (D(T2my,, T2ny,)) s (p(Twmy, Twn,)) }

P(TCUm 1, Ty —1)7p(Tym 1, Tyn —1)7
< k k k k
- TZ) <maX{ p(szk—laTznk—l)ap(Twmk—lvank—l)

o ¢ <max{ p(Txmk—laT-:Unk—l)ap(Tymk—laTynk—l)a }) )

p(T’ka—:h Tznk—1)7p(Twmk—la Twnk—l)
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Letting k — oo and using (14) and (15), we obtain

v(x) = ()0 (x) v (3)

a contradiction.
Thus {Tz}, {Tyn}, {T2,} and {T'w, } are Cauchy sequences in the metric
space (X, d,). That is

lim d,(Tzy,Tzy) =0, lim  d,(Tyn, Tym) = 0,

m,n—00 m,n—o00
lim d,(Tzp,Tzm) =0 lim d,(Twy, Twy,) = 0.
m,n—00 m,n—00

From the definition of d, and from (3), we have

lim p(Tzy,Tzy) =0, lim p(Tyn, Tym) =0,
(16) m,n—00 m,n—00
lim p(Tz,,Tzy) =0, lim p(Twy,, Twy,) = 0.
m,n—00 m,n—00

Thus {T'zy}, {Tyn}, {T2,} and {Tw,} are Cauchy sequences in (X, p).
Since (X, p) is complete, the Cauchy sequences {T'zy }, {Tyn}, {120}
and {T'w,} are convergent.
Since T is an ICS mapping, there exist x,y, z,w € X such that

n—oo n—oo
lim p(zp,2) =p(z,2), lim p(w,,w) = p(w,w).

n—00 n—oo

Since T is continuous, we have

lim p(Tzy, Tx) = p(Te, Tx),  lim p(Tyn, Ty) = p(Ty,Ty),

n—oo

lim p(Tz,,Tz) =p(Tz,Tz), lim p(Tw,, Tw) = p(Tw,Tw).

These implies that {Tx,}, {Ty,},{T2,} and {T'w,} are convergent to Tz,
Ty, Tz and Tw respectively. Using Lemma 1.1 (2) and from (16), it follows
that

(17) e .
lim p(Tz,,Tz) =0 and lim p(Tw,,Tw)=0.
n—oo n—oo

lim p(Tx,,Tx) =0, lim p(Tyn, Ty) = 0,}
n—oo
Suppose X has the property (A).
Since {z,},{zn} are non - decreasing with z,, — z,z, — z and also
{yn},{wn} are non - increasing with y,, — y, w, — w then by the property
(A), we have x, < x,y, = vy, 2z, = z and w, = w for all n.
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Consider now
0 (T2, TF (2,9, 2,0))) = DT F (@, 20, 0), TF (2,2, )
<o (e { 2o L) 1)
! (maX{ T T T o) }) |

Taking n — oo and using (17), we get
p(Tx, TF(x,y,z,w)) =0

so that Tx = TF(x,y, z,w).Since T is injective, we obtain z = F(x,y, z,w).

Similarly we can show that y = F(y,z,w,z),z = F(z,w,z,y),w =
F(w,z,y, 2).
Thus (z,y, z,w) is a quadruple fixed point of F. O

Theorem 2.2. Let (X,p) be a complete partial metric space. Suppose T :
X — X is an ICS mapping and F : X* — X. Assume that there exist
Y €W and ¢ € ® such that

¥ (p(TF(z,y, 2,w), TF(u,v,7,1)))
p(Tx, Tu), p(Ty, Tv),

<

(2.2.1) <9 <max{ p(Tz,Tr),p(Tw,Tt)
B p(Tx, Tu),p(Ty, Tv),
i (max{ p(Tz,Tr),p(Tw,Tt) f)
forall z,y, z,w,u,v,r,t € X.
Then F' has a quadruple fized point of the form (z,x,z,x) where x € X.

Proof. By proceeding the proof of Theorem 2.1, we get

F(x7y?z7w):x7 F(y7z7w7’1"):y7
F(Z’w7$7 y) = Z? F(w’ x? y? Z) = w?

for some x,y, z,w € X.
Now from (2.2.1), we have

¢(P(T$a Ty)) =1 (p(TF(.CE, Y, %, w)a TF(
p(Tz, Ty),p(Ty,Tz),
<9 (max{ p(Tz, Tw),p(Tw, Tx) })

(s { 2T IO T, VY,

y? Z7 w7 J;)))
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Similarly, we have

P(p(Ty,Tz)) < <max{ 5(< :gg;) (?”zq/uj;g) })

— o (max{ 2T EOR T,

o(p(r=Tw) < b (mae{ 2EETUPE 00 )

o (wme{ KT D).
and

Y(p(Tw, Tx)) < ¥ (mx{ fo Ty (.19 })

p(Tx, Ty),p(Ty,Tz),
Tz Tw),p(Tw, Tx) '
Now

o (ome{ RS )
( )
)

p
 an{ TSI ot
Y(p(Tz, Tw)), Y(p(Tw, Tz

\_/\/
~—

_¢<max{ T ),

Hence

since ¢(t) > 0 for ¢ > 0.
Te =Ty, Ty=Tz,Tz =Tw,Tw = Tx.
Since T' is injuctive, we have x =y = z = w.
Thus F' has a quadruple fixed point of the form (x,z, x, z).

The following example illustrates our Theorem 2.2
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Example 2.1. Let X = [0,1], p(z,y) = max{z,y} and T : X — X be

defined by T'(z) = §. Let F': X x X x X x X — X by F(z,y,2,w) =

M and 1, ¢ : [0,00) — [0,00) by () = t, ¢(t) = L clearly all

conditions of Theorem 2.2 are satisfied and

F(CB? y’ Z? w) F(u7 U7 r? t)
2 2

S(p(TF (@, 2 w), TF(u,v,1,1)) = p (

B+ 2+ 22+ w? 0?4+ 1
= max ,
16 16

= %max{xQ —I—y2 +zz+w2,u2+v2+r2+t2}

= % [max {$2,u2} + max {yQ, 1)2} + max {22, 7‘2} + max {w2,t2}}
< imax{max {x2,u2} , max {y2,02} , max {22,7“2} , max {w2,t2}}
< i max{max{a:, u}, max{y, v}, max{z, r}, max{w, t}}

1
< 3 max{maX{Tx, Tu}, max{Ty, Tv}, max{Tz Tr}, max{Tw, Tt}}
= & (max{p(T, Tu), p(Ty, Tv), p(T= Tr), p(Tw, TH)} )

— ¢ (max{p(Tx, Tu),p(Ty, Tv),p(Tz,Tr), p(Tw, Tt) }) )

Clearly (0, 0, 0, 0) is quadruple fixed point of F'.

3. APPLICATION

In this section, we study the existence of a unique solution to an initial
value problem, as an application to Theorem 2.2.
Consider the initial value problem

(18) xl(tl) = l(tl,l’(tl),l‘(tl),ZL‘(tl),SL’(tl)), thel= [07 1]7 IB(O) = 2o
where [ : I x [32,00) x [$,00) X [2,00) X [%2,00) — [%2,00) and z € RT.
Theorem 3.1. Consider the initial value problem 18 with

Zo

le o<1 x [%,oo) x [00) x [Z,00) x [%,oo))
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and
t1
[ 165 a(5). ) 2(5), w(s))ds <
0
ty )
5 [ Us,x(s),2(s), a(s), x(s))ds — 2,
t1
T
5 Z(S,y(S),y(S),y(S),y(S))d Zoa
< max
< 1 "
5 [ Us,2(5),2(s), 2(5), 2(s))ds — 2,
0
L7
5 [ 1) w(s). wls) ws)ds - 2
0 J
Then there exists unique solution in C(I,[%,00)) for the initial value prob-
lem 18.

Proof. The integral equation corresponding to initial value problem 18 is
t
(19) z(t) = x0 + /l(s,x(s),x(s),x(s),x(s))ds.
0

Let X = C(I,[%,00)) and p(z,y) = max{z — 2,y — L} for z,y € X.
Define ICS mapping T': X — X by Tx = 7, ¥,¢ : [0,00) — [0,00) by
() =t,6(t) =L and F: X x X x X — X by

F(z,y,z,w)(t1) = zo + /l(s,x(s),y(s), z(s),w(s))ds.
0

Now

¢(p(TF($ayaZ7w)(t1)’F(uv’UaTa t)(tl)))
:m{w o Flu,v,m,t) }

4 8’ 4 8
t1
1 204 [1(s,x(s), y(s), z(s), w(s))ds,
= — Imax
4 31
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IN
|

= — Inax

= — Imnax

1
=§maX{

o

oo

~+
-

3 s 2(s),2(5), 2(5), 2())ds - 2
t1
%fl(s’y(8)7y(8)7y( ) ( ))dS — =2
o+ + max (21
%fl(s,Z(S),z(s),z(s)’z(s))ds _ 9%07
0
t
% fll(s,w(s)’ w(s), w(s), w(s))ds —
0
t1
%JZ(S,U(S),U(S%U( ) ( ))ds — Zo
5]
%fl(s,v(s),v(s),v( ),v(s))ds — L
2+ max %1
%fl(s,r(s), r(s),r(s),r(s))ds — %,
0
t1
% f l(s7 t(3)7 t(S), t(s), t(s))ds _ %
\ 0
max{m(il) — 9(21) — %o, Z(Zl) — %o, w(il) o
max{# _ %07 U(Zl) _ :%37 T(fll) _ %O’ t(il) _ %O
max {Tx(t) = 5, Tu(t) = 1,
max }Ty(tl) o Tu(ty) — :vgoi’
max {Tz(t;) — 22, Tr(t1) — 22},
s Th) — 740
p(Tx, Tu), p(Ty, Tv),p(Tz,Tr),p(Tw,Tt) }
p(T.’IT,T’U,) Ty,T’U R
p(TZ,TT) TU) Tt

p(Tx,Tu),p
p(Tz,Tr),

(Ty, Tv),
p(Tw, Tt)

)

Thus F satisfies the condition (2.2.1) of Theorem 2.2. From Theorem 2.2,
we conclude that F' has a quadruple fixed point. In particular z(t) is the
unique solution of the integral equation (19).
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